The Castlerigg Project

Follow-up Ley-Lines Work

(Also see the original document scan PDF)



THE CASTLERIGG PROJECT.

LEY LINES.


INTRODUCTION.


In December 1975 a team from Keswick School entered a competition to try to win a computer.


The project was intended to study the mathematics of megalithic stone circles. One of the sections of the project was concerned with ley lines.


The team set out to investigate the claim of Watkins (1925), that there is a widespread network of leys or lines linking up ancient sites, using computer techniques.


The results showed that there were no significant differences between the number of leys from real data, and a random set of sites.


On further checking some of the data was found to be incorrect.


The data was therefore re-collected and re-tested for leys; new random data also being generated.


Copies of the various programs are provided.


LEY LINES DATA COLLECTION.


Data collected by MARGARET C. WYLIE and DAVID J. WYLIE.


Data was collected from an Ordnance Survey one inch-one mile tourist map of the Lake District.


100 sites were found & checked; and classified as follows:


STONE CIRCLE .............

1

CAIRN CIRCLE .............

2

CAIRN ....................

3

SETTLEMENT ...............

4

TUMULUS ..................

5

ENCLOSURES & OTHERS ......

6


Of the 100 sites :

11

were stone circles.

4

were cairn circles.

50

were cairns.

5

were settlements.

12

were tumuli.

18

were enclosures etc.


The data is shown in table 1.


N.B: The site numbers are for reference only and have no indication of the position of the site.


LEY LINES DATA. (TABLE 1)


SITE
NUMBER

REFERENCE

TYPE

NAME OF SITE (IF ANY)
OR AREA

X

Y

1

251

826

1

Gill House Beck

2

252

830

3

Brunt Riggs

3

279

844

1

Lowick

4

286

841

3

Lowick

5

264

856

3

Subberthwalte

6

172

882

1

Swinside

7

251

883

3

Kirby Moor

8

256

880

2

Kirby Moor

9

266

890

3

Cocken Skell

10

266

909

3

Yew Bank

11

272

905

3

Tarn Riggs

12

313

902

3

Bethecar Moor

13

111

919

6

Near Bank

14

205

910

3

Stonescar

15

205

915

3

Stonescar

16

211

925

3

Sicle Pike

17

273

925

3

Torver Low Common

18

278

924

3

Torver Low Common

19

134

938

3

Haberthwaite Fell

20

135

939

6

Haberthwaite Fell

21

215

935

3

Stainton Ground

22

271

939

3

Souter-Stead

23

135

945

3

Stainton Beck

24

266

945

3

Bleaberry Haws

25

135

958

3

Black Beck

26

268

950

1

Bleaberry Haws

27

269

959

3

Torver High Common

28

135

961

4

Black Beck

29

151

969

3

Devoke Water

30

188

968

3

Warm Crag

31

277

963

3

Little Arrow Moor

32

285

966

3

Little Arrow Moor

33

323

964

3

Thurston

34

155

975

3

Water Crag

35

245

974

6

Long House Gill

36

287

975

6

Heathwaite

37

291

980

3

Church Beck

38

216

1014

3

Hardknott

39

221

1014

3

Hardknott

40

173

1024

2

Longrigg

41

173

1028

3

Longrigg

42

103

1054

3

Hollow Moor

43

123

1063

3

Windsor

44

100

1077

3

Stockdale Moor

45

99

1080

3

Stockdale Moor

46

115

1077

3

Stockdale Moor

47

96

1089

3

Stockdale Moor

48

107

1083

3

Stockdale Moor

49

140

1085

3

Nether Wasdale

50

88

1099

3

Boat How

LEY LINES DATA. (TABLE 1) CONTINUED.

SITE
NUMBER

REFERENCE

TYPE

NAME OF SITE (IF ANY)
OR AREA

X

Y

51

105

1096

3

Cawfell Beck

52

86

1105

3

Boat How

53

90

1116

3

Lank Rigg

54

215

1167

3

Hindscarth

55

291

1236

1

Castlerigg

56

105

1304

6

Cockermouth

57

177

1317

1

Elva Plain

58

225

1355

5

Binsey

59

141

1380

6

Eweclose

60

196

1377

6

Bothel

61

258

1385

5

Aughtree

62

262

1382

6

Aughtree

63

287

1394

6

Thistlebottom

64

495

868

3

Levens

65

531

888

6

Castlesteads

66

338

981

3

Hawkshead

67

438

1009

4

High Borrans

68

460

1025

4

Millrigg

69

425

1076

3

Troutbeck Park

70

469

1129

5

Birks Crag

71

457

1137

5

Low Raise

72

535

1135

5

Ralfland Forest

73

366

1132

1

Shap

74

556

1155

5

Shap

75

490

1163

6

Bampton Common

76

491

1163

3

Bampton Common

77

500

1163

3

Bampton Common

78

494

1179

1

Towtop Kirk

79

459

1193

6

Brock Crag

80

500

1196

5

Rough Hill

81

528

1193

1

Knipe Moor

82

499

1203

5

Beckfoot

83

482

1218

5

Tarn Moor

84

496

1219

2

Moor Divock

85

482

1222

1

Moor Divock

86

489

1225

5

Moor Divock

87

494

1222

3

Moor Divock

88

494

1229

5

Moor Divock

89

330

1240

4

Threlkeld Common

90

410

1246

6

Greenrow

91

537

1243

6

Newtown

92

397

1254

5

Great Mell Fell

93

519

1259

4

Tirril

94

564

1263

2

Whinfell

95

485

1275

6

Stainton

96

419

1282

6

Beckside

97

519

1285

1

Penrith

98

483

1305

3

Mossthorn

99

417

1313

6

Berrier Hill

100

481

1315

6

Newton Reigny

RANDOM DATA


Sets of 100 random sites were generated in the computer.


The data was then processed in the same way as the real data.


The random sites were generated on an area identical to that of the map used for the real data.


A copy of the data generating program is provided.


The ley detecting program was run with various sets of random data to eliminate the possibility of freak sets of random data giving misleading results.


LEY LINES DATA PROCESSING.


To determine if three sites are in line the following method was used:


1) The length of each side of the triangle made by the sites was found from the site co-ordinates.



Object0


E.G. Side 'a' would have a length of:


Object1



From the length of each side a number (P) between 0 & 100 was calculated using the formula:


Object2


When a is the shortest side and c the longest.


If P was found to be less than 2 for any 3 sites then the sites were taken to be in line. (Other values of P were also used.)




Welcome
Welcome!


Eclipse
Eclipse


Toolstore
Toolstore


Technology
Technology


Personal
Personal


Alba House
Alba House


Castlerigg Project
Castlerigg Project


Bookmarks
Bookmarks


The Personal Planet is maintained by Dave Wylie djwpptag David Wylie Last significant update: Monday 14th August 2017 David J. Wylie